Floral homeotic genes are targets of gibberellin signaling in flower development.
نویسندگان
چکیده
Gibberellins (GAs) are a class of plant hormones involved in the regulation of flower development in Arabidopsis. The GA-deficient ga1-3 mutant shows retarded growth of all floral organs, especially abortive stamen development that results in complete male sterility. Until now, it has not been clear how GA regulates the late-stage development of floral organs after the establishment of their identities within floral meristems. Various combinations of null mutations of DELLA proteins can gradually rescue floral defects in ga1-3. In particular, the synergistic effect of rga-t2 and rgl2-1 can substantially restore flower development in ga1-3. We find that the transcript levels of floral homeotic genes APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) are immediately upregulated in young flowers of ga1-3 upon GA treatment. Using a steroid-inducible activation of RGA, we further demonstrated that these floral homeotic genes are transcriptionally repressed by RGA activity in young flowers whereas the expression of LEAFY (LFY) and APETALA1 (AP1) is not substantially affected. In addition, we observed the partial rescue of floral defects in ga1-3 by overexpression of AG. Our results indicate that GA promotes the expression of floral homeotic genes by antagonizing the effects of DELLA proteins, thereby allowing continued flower development.
منابع مشابه
A Cucumber DELLA Homolog CsGAIP May Inhibit Staminate Development through Transcriptional Repression of B Class Floral Homeotic Genes
In hermaphroditic Arabidopsis, the phytohormone gibberellin (GA) stimulates stamen development by opposing the DELLA repression of B and C classes of floral homeotic genes. GA can promote male flower formation in cucumber (Cucumis sativus L.), a typical monoecious vegetable with unisexual flowers, and the molecular mechanism remains unknown. Here we characterized a DELLA homolog CsGAIP in cucum...
متن کاملTranscriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.
Floral organs, whose identity is determined by specific combinations of homeotic genes, originate from a group of undifferentiated cells called the floral meristem. In Arabidopsis, the homeotic gene AGAMOUS (AG) terminates meristem activity and promotes development of stamens and carpels. To understand the program of gene expression activated by AG, we followed genome-wide expression during ear...
متن کاملRice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate.
AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meriste...
متن کاملRegulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development.
During the course of flower development, floral homeotic genes are expressed in defined concentric regions of floral meristems called whorls. The SUPERMAN (SUP, also called FLO10) gene, which encodes a C2H2-type zinc finger protein, is involved in maintenance of the stamen/carpel whorl boundary (the boundary between whorl 3 and whorl 4) in Arabidopsis. Here, we show that the regulation of SUP e...
متن کاملATX-1, an Arabidopsis Homolog of Trithorax, Activates Flower Homeotic Genes
BACKGROUND The genes of the trithorax (trxG) and Polycomb groups (PcG) are best known for their regulatory functions in Drosophila, where they control homeotic gene expression. Plants and animals are thought to have evolved multicellularity independently. Although homeotic genes control organ identity in both animals and plants, they are unrelated. Despite this fact, several plant homeotic gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 20 شماره
صفحات -
تاریخ انتشار 2004